Symmetries and global solvability of the isothermal gas dynamics equations
نویسندگان
چکیده
We study the Cauchy problem associated with the system of two conservation laws arising in isothermal gas dynamics, in which the pressure and the density are related by the γ-law equation p(ρ) ∼ ρ with γ = 1. Our results complete those obtained earlier for γ > 1. We prove the global existence and compactness of entropy solutions generated by the vanishing viscosity method. The proof relies on compensated compactness arguments and symmetry group analysis. Interestingly, we make use here of the fact that the isothermal gas dynamics system is invariant modulo a linear scaling of the density. This property enables us to reduce our problem to that with a small initial density. One symmetry group associated with the linear hyperbolic equations describing all entropies of the Euler equations gives rise to a fundamental solution with initial data imposed to the line ρ = 1. This is in contrast to the common approach (when γ > 1) which prescribes initial data on the vacuum line ρ = 0. The entropies we construct here are weak entropies, i.e. they vanish when the density vanishes. Another feature of our proof lies in the reduction theorem which makes use of the family of weak entropies to show that a Young measure must reduce to a Dirac mass. This step is based on new convergence results for regularized products of measures and functions of bounded variation.
منابع مشابه
Modeling and Optimization of non - isothermal two- phase flow in the cathode gas diffusion layer of PEM fuel cell
In this paper, a non-isothermal two-phase flow in the cathode gas diffusion layer (GDL) of PEM fuel cell is modeled. The governing equations including energy, mass and momentum conservation equations are solved by numerical methods. Also, the optimal values of the effective parameters such as the electrodes porosity, gas diffusion layer (GDL) thickness and inlet relative humidity are calculated...
متن کاملNumerical solvability of system of Fredholm-Hammerstein integral equations using Modification of Hat Function
A system of integral equations can describe different kind of problems in sciences and engineering. There are many different methods for numerical solution of linear and nonlinear system of integral equations. This paper proposed a numerical method based on modification of Hat functions for solving system of Fredholm-Hammerstein integral equations. The proposed method reduced a system of integr...
متن کاملReduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملAn Investigation on the Effects of Gas Pressure Drop in Heat Exchangers on Dynamics of a Free Piston Stirling Engine
This paper is devoted to study the effects of pressure drop in heat exchangers on the dynamics of a free piston Stirling engine. First, the dynamic equations governing the pistons as well as the gas pressure equations for hot and cold spaces of the engine are extracted. Then, by substituting the obtained pressure equations into the dynamic relationships the final nonlinear dynamic equations gov...
متن کاملEffect of Water Gas Shift Reaction on the Non-Isothermal Reduction of Wustite Porous Pellet Using Syngas
Effect of water gas shift reaction (CO+H2O=CO2+H2) on wustite reduction has been investigated by a transient, non-isothermal mathematical model based on grain model. In this model, wustite porous pellet is reduced using Syngas, namely a mixture of hydrogen, carbon monoxide, carbon dioxide and water vapor. For this purpose, governing equations containing continuity equation of species and energy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004